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FOREWORD

Effective February 12, 1989, a reorganization of the NASA Langley Research Center
Aeronautics Directorate took place. One of the results of this action was the formation of

the Applied Aerodynamics Division (AAD). This division is composed of elements of the

former Low-Speed, Transonic, and High-Speed Aerodynamics Divisions. One of the goals

of this reorganization is to place most of the major aerodynamic test facilities in the same
organization.

The purpose of this publication is to present a brief overview of this new division and to

describe the missions, facilities, programs, and recent research highlights of each of its branches.

It is anticipated that this document will be of use to those interested in testing in the facilities

as well as those only interested in learning more about the existing capabilities.

Your comments and suggestions for improvement or additions to this document are welcome.

When major changes in the division occur, this document will be revised. At that time, any
suggested improvements can be incorporated. For additional information, contact the AAD at

Mail Stop 285, NASA Langley Research Center, Hampton, VA, 23665-5225, (804) 864-3520 or
(804) 864-5023 (facsimile).

William P. Henderson
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APPLIED AERODYNAMICS DIVISION

The Applied Aerodynamics Division (AAD) is
one of four divisions under the Office of Director for

Aeronautics at the NASA Langley Research Center

(LaRC). This is illustrated in the LaRC organization

chart presented in figure 1. As a result of the

1989 reorganization, most of the major subsonic,

transonic, and supersonic aerodynamic test facilities,

as well as some of LaRC's hypersonic facilities, are

now the responsibility of this division.

The AAD consists of about 115 full-time civil

service employees distributed in five branches, one

office, and the division office. This organization is

illustrated in the division organization chart pre-

sented as figure 2. This chart gives the names of

the heads of the organizations as well as a list of
the facilities assigned to each branch or office. The

distribution of the personnel and skill mix among the

offices and branches is illustrated in a bar graph. (See

fig. 3.) The Subsonic Aerodynamics Branch (SAB)
is supplemented by eight U.S. Army employees un-

der a formal agreement with the Aviation Systems

Command. These personnel are responsible for basic

rotorcraft aerodynamic research in the SAB facilities.
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It is also important to note in figure 3 that

the majority of the division personnel are research

engineers. Most support services, as well as addi-

tional research effort, are provided to the division by

personnel of other LaRC divisions, support-service

contractors, and universities.

The wind-tunnel facilities assigned to the AAD
are situated in seven locations in the West Area and

one location in the East Area of the LaRC. The

aerial photographs in figures 4 and 5 indicate the

locations of the facilities. In most cases, the research

personnel associated with the facilities are located in

office space adjacent to the facility.
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Figure 3

1. 8-Foot Transonic Pressure Tunnel

Figure 4

THE MISSION

The mission of the AAD is to advance the state-

of-the-art of aircraft and missile technology from

subsonic to hypersonic speeds by developing and

applying new innovative aerodynamic technologies.
Particular emphasis is placed on Reynolds-number

effects, high angle-of-attack flows, stability and con-

trol, performance, innovative configurational con-

cepts, new multifunctioning nozzles, advanced engine

installation concepts, and the interaction of these

technologies with technologies from other disciplines

in a multidisciplinary manner.

ORIGINAL PAGE
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1. National Transonic Facility

2. 0.3-Meter Transonic Cryogenic Tunnel
3. 16-Foot Transonic Tunnel

4. 14- By 22-Foot Subsonic Tunnel

5. 7- By 1P-Foot High-Speed Tunnel

6. Unitary Plan Wind Tunnel
7. 20-Inch Mach 6 Wind Tunnel

Mach 8 Variable-Density Tunnel

Figure 5

Tile research emphasis in the AAD is on the

development of advanced aerodynamic technology
which will play a key role in future aerospace vehi-
cles, incorporating such advanced concepts as active

flight controls, thrust vectoring for control, laminar

flow and turbulent drag-reduction concepts, closely-
coupled propulsion/airframe integration, and flexible
composite structures. Particular areas of emphasis
included improving the aerodynamic efficiency and
reducing the fuel consumption of conventional jet and
turboprop transports, developing the technology for
advanced military combat aircraft and missile con-
cepts, developing theoretical and analytical meth-
ods for predicting aerodynamic characteristics for
aircraft with both separated and/or attached flows,

for nozzle/afterbodies, pylon/nacelle and inlet flows,
jet/ejector ground interactions, and a data base for
theory validation. In addition, the AAD is responsi-
ble for developing advanced experimental techniques
including advanced-wall concepts for transonic wind

tunnels, cryogenic wind-tunnel technology, advanced
instrumentation, and magnetic-suspension systems.

Research information is generated through

advanced analytical techniques making use of LaRC's
large digital computer complex and through the
use of unique experimental facilities, such as the
16-Foot Transonic Tunnel, the 8-Foot Transonic
Pressure Tunnel, the 7- by 10-Foot High-Speed Tun-
nel, the 0.3-Meter Transonic Cryogenic ]5mnel, the
14- by 22-Foot Subsonic Tunnel, the 20-Inch Mach 6
Tunnel, and the Mach 8 Variable Density Tunnel.

Also, the AAD is responsible for the operation
of the cryogenic National Transonic Facility and the
supersonic Unitary Plan Wind Tunnel.

The development of new test methods and data-
reduction techniques for these facilities and the coor-
dination of in-house research programs and coopera-
tive studies in support of industry, the Department
of Defense (DOD), and other Government agencies
are areas of continuous activities.

ORIGINAL PAGE
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FACILITY RESEARCH OFFICE

THE MISSION

The Facility Research Office (FRO) was
created early in 1991 in response to the recog-
nition of a need to focus and coordinate several

existing research programs related to improving
the design and use of wind tunnels. The pri-
mary purpose of the FRO is to advance the state-

of-the-art of wind-tunnel testing with particular
emphasis on cryogenic-nitrogen, liquid-helium, and
heavy-gas tunnels. Areas of emphasis directly
related to wind-tunnel testing include data accu-
racy and tunnel productivity. Areas of emphasis
directly related to test techniques include elimina-
tion or reduction in tunnel-wall and model-support
interference and developing improved flow diagnostic
techniques.

The FRO will coordinate within AAD all in-house

research and development related to facilities, test
techniques, and instrumentation. Through the Small
Business Innovation Research (SBIR) Program, the
FRO involves industry researchers in selected areas
related to improving the quality and quantity of
data from wind tunnels. As required, the FRO
will develop additional programs to involve industry,
university, and government researchers in selected
research projects.

The FRO is responsible for establishing and
maintaining technical contact with researchers

around the world working in the areas of tunnel
development and testing techniques. As a part of
this effort, the FRO oversees the production and
distribution of various bibliographies and newslet-
ters related to cryogenic wind tunnels, adaptive-wall
test sections, and magnetic suspension and balance

systems. The FRO is responsible for identifying
areas of foreign technology related to tunnel develop-
ment and testing techniques. Once identified, in con-
cert with NASA Headquarters, the FRO will seek to
implement cooperative programs related to areas of
mutual interest.

The FRO is responsible for the management of
the 0.3-Meter Transonic Cryogenic Tunnel
(0.3-Meter TCT).

THE PERSONNEL

FLECHNER, STUART G.
HILL, ACQUILLA S.

KILGORE, ROBERT A. (Office Head)
LADSON, CHARLES L. (Assistant Office Head)
LEE, EDWIN E., JR.

WORTH, CATHERINE B.

THE FACILITY

0.3-Meter Transonic Cryogenic Tunnel

The 0.3-Meter Transonic Cryogenic Tunnel

(0.3-Meter TCT) is a closed-circuit, fan-driven cryo-
genic pressure tunnel. The 0.3-Meter TCT oper-
ates over the Mach number range of 0.20 to 0.95 at
stagnation temperatures and pressures from 150 ° F
to approximately -300 ° F and from 1 to 6 atm.,
respectively. The wide ranges of pressure and
temperature allow the study of Reynolds-number
effects on flow phenomena up to Reynolds numbers of
100 million/foot.

The tunnel was placed in operation in 1973 as
a three-dimensional pilot tunnel to demonstrate the
cryogenic wind-tunnel concept at transonic speeds.
During more than 15 years of operation, the
0.3-Meter TCT has run with three different test

sections. Currently, the facility is operating with
an adaptive-wall test section which is nominally
13 inches square and has an effective length of
55.8 inches. This test section has four solid walls

with the horizontal walls (floor and ceiling) be-
ing flexible. A system of 21 computer-controlled

ORIGINAL PAGE
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jacks supports each of the flexible walls. The fa-
cility has motorized model-support turntables and
a traversing wake-survey probe, both of which are
computer controlled. For two-dimensional testing,
the 0.3-Meter TCT has provisions for both active-
and passive-sidewall boundary-layer control. Porous
plates can be fitted into the rigid sidewalls just
upstream of the model location.

CURRENT PROGRAMS

A major component of the current program of the
FRO is to bring the 0.3-Meter TCT back on line fol-

lowing modification of the liquid nitrogen supply sys-
tem. Once the tunnel is operating, we will use it to
support several research and development projects.
These include tests related to flow visualization and

transition detection in cryogenic tunnels. We will
make additional mechanical modifications to the

0.3-Meter TCT to improve the flow quality and add
a 3-dimensional model support system. We will
continue a program to improve both software and
hardware related to the adaptive-wall test section to

improve data accuracy and increase productivity.
We will evaluate the use of heavy gases for high-

lift testing, possibly using the 0.3-Meter TCT for
experimental verification of theoretical studies
related to heavy-gas tunnels. As a part of this effort,
we will publish a bibliography on heavy-gas wind tun-
nels. Finally, we will compare and contrast the rel-
ative merits of heavy-gas and cryogenic tunnels for
high-lift testing.

An ongoing effort of the FRO is to provide
administrative and technical support to both na-
tional and international meetings related to tunnel

and test-technique development. Another ongoing
effort is the publication of bibliographies and newslet-
ters related to cryogenic tunnels, adaptive-wall test
sections, and magnetic suspension and balance sys-
tems. Currently in preparation are bibliographies on
wall interference, support interference, magnetic sus-
pension and balance systems, and heavy-gas wind
tunnels.

HIGHLIGHTS OF RECENT

RESEARCH

Transition Detection by IR Imagery

According to the Reynolds analogy, the
heat-transfer coefficient and the skin-friction coeffi-
cient behave similarly under fully-developed

boundary-layer flows. Therefore, the boundary-layer
characteristics can be inferred from the thermal

signature on the airfoil surface. To enhance the
thermal signature of the transition, a positive tem-
perature perturbation (smaller than 1 percent of

the free-stream temperature) was imposed on the
flow. The subsequent temperature response of the
surface showed the effects of the difference between
the heat-transfer coefficients under the laminar and

turbulent boundary-layer regime; that part of the air-
foil under the turbulent boundary layer heated faster
than the part under the laminar regime. Further vi-
sual enhancement was achieved by compressing the
range of temperature differences associated with the
laminar-flow regime into one color, in this case blue,
and those temperature differences associated with
the turbulent-flow regime into white. The schematic
of the test setup in the 0.3-Meter TCT is shown in
the first figure below, and the second figure below
shows the result of a pixel-by-pixel subtraction of two
thermograms taken after and before the temperature
perturbation. This approach focuses on the temper-
ature difference between the laminar and turbulent
areas of the airfoil rather than on the absolute tem-

perature of its surface. It also filters out apparent
temperature differences on the airfoil surface to lo-
cal variations in the emittanee. Using this method,
natural and forced transition were detected at free-

stream and surface temperatures down to -154 ° F.

SCHEMATIC OF TEST SETUP

IN 0.3-METER TCT
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TRANSITION DETECTION BY IR IMAGERY
IN 0.3-METER TCT
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Construction and Transonic Testing of a

Thin Wing at High Reynolds Numbers

Airfoils used in supersonic fighter aircraft are

typically very thin. Building thin airfoil models

with pressure instrumentation for cryogenic testing

is unusually difficult. However, a technique which

uses chemically-etched pressure channels in the bond
planes between multiple sheets of metal has been

developed. The canard of the X-29 fighter aircraft

was chosen as a proof-of-concept model to build.

This configuration has a maximum thickness of only

5 percent of chord; and it is highly tapered from

root to tip, making pressure instrumentation very

challenging.

The next figure is a photograph of the X-29
canard upper surface. Three rows of orifices with

a total of 56 orifices on the upper surface exist and

six thin plates form the upper surface of the airfoil.
The outcrop of the five bond planes is clear in the

figure. There are 37 additional orifices on the bottom
surface. The choice of model size to test resulted

in a root chord of 5.71 inches and a corresponding
maximum thickness of 0.285 inch.

The model was mounted on the sidewall turntable

in the 0.3-Meter TCT, and a special computational

method was used to adapt the flexible test-section

floor and ceiling for minimum interference. The

aerodynamic data (surface pressures and wake sur-

vey) shown in the figure on the following page were

taken for the wing at Mach numbers from 0.30 to

1.07. The data in the figure are for an angle of at-

tack of 8.38 °, Mach number of 0.88, and Reynolds

number (based on mean aerodynamic chord) of
28.2 million.
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SUBSONIC AERODYNAMICS BRANCH

THE MISSION

The Subsonic Aerodynamics Branch (SAB) con-

ducts research and provides technical expertise in

subsonic aerodynamics, including fundamental fluid

mechanics, performance and efficiency, stability, con-

trol, and aerodynamic loads for general aviation,

rotorcraft, transport, and military high-performance

aircraft. The research emphasis is on the devel-

opment of advanced aerodynamic technology which

will play a key role in future aerospace vehicles

incorporating such concepts for efficient high lift

and maneuverability, thrust vectoring for control,

drag reduction, closely-coupled propulsion/airframe

integration, and minimization of ground effects. The

research is conducted using the latest state-of-the-

art theoretical methods for prediction and analysis,

experiments in the 14- by 22-Foot Subsonic Tunnel,

and selected flight experiments. Research results in-

clude advanced aerodynamic concepts, new insight

into aerodynamic phenomena important to advanced

vehicles, and prediction of advanced-vehicle aerody-

namic characteristics including propulsion-induced

effects and ground effects. The SAB also provides

technical and facility assistance to the DOD and

other civil organizations (as appropriate) and pro-

vides facility support for Army rotorcraft research.
Other NASA organizations work closely with the

SAB in conducting research in areas of common
interest.

THE PERSONNEL

ALTHOFF, SUSAN L.

APPLIN, ZACHARY T.

BANKS, DANIEL W.

BERRY, JOHN D.

BEZOS, GAUDY M.

CAMPBELL, BRYAN A.

CROOM, TAMARA L.

ELLIOTT, JOE W.

GATLIN, GREGORY M.

GENTRY, GARL L., JR.

HODGES, WILLIAM T.

JONES, KENNETH M.

KELLEY, HENRY L.

KEMMERLY, GUY T.

KJERSTAD, KEVIN J.

MORGAN, HARRY L., JR. (Assistant Branch

Head)
ORIE, NETTIE M.

PAULSON, JOHN W., JR.

PHELPS, A. E., III

QUINTO, P. FRANK
WALKER, GREGORY W.

WAGGONER, EDGAR G. (Branch Head)

WILSON, JOHN C.

WOOD, RICHARD M.

YAROS, STEVEN F.

THE FACILITY

14- by 22-Foot Subsonic Tunnel

The LaRC 14- by 22-Foot Subsonic Tunnel (14-

by 22-Foot ST) (formerly the 4- by 7-Meter Tunnel)

is used for low-speed testing of powered and unpow-

ered models of various fixed- and rotary-wing civil

and military aircraft. The tunnel is powered by an

8000-hp electrical drive system which can provide

precise tunnel speed control from 0 ft/s to 318 ft/s

with the Reynolds number per foot ranging from 0 to
2.i × 106. The test section is 14.5 feet high, 21.8 feet

wide, and approximately 50 feet long. The tunnel

can be operated as a closed tunnel with slotted walls

or as one or more open configurations when the side

walls and ceiling are removed to allow extra test-

ing capability, such as flow-visualization and acoustic

tests. The tunnel is equipped with a two-component

laser velocimeter system. Furthermore, boundary-

layer suction on the floor at the entrance to the test
section and a moving-belt ground board for opera-

tion at test-section-flow velocities to 111 ft/s can be

installed for ground-effect tests.

LaRC has completed significant modifications

to the 14- by 22-Foot ST to improve and ex-

pand its aerodynamic and acoustic test capabil-

ity. One of the more significant aerodynamic

improvements was achieved through the use of flow

ORIGINAL PAGE
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deflectors installed downstream of the first cor-

ner of the tunnel circuit to improve the perform-
ance of the tunnel fan. The deflectors resulted

in a more uniform velocity distribution into the

tunnel drive system and eliminated regions of largc-
scale flow separation in the return leg of the tunnel
circuit.

Langley f4-by 22-Foot SubSonic Tunnel

-_ 3mooo

11 I::ii  .-----
W _'_C ] _L _ // I_"" '

........ / _----_1 ,'_= .--

-
A turbulence-reduction system consisting of a

grid, a honeycomb, and four fine-mesh screens dra-

matically reduced the level of longitudinal turbulence

intensity in the tunnel test section. This system pro-
vided a reduction in turbulence of 50 percent or more

for the closed test-section configuration. Periodic

flow pulsations which occurred at several speeds in

the unmodified configuration of the open test sec-

tion were eliminated by installation of a new flow
collector.

Acoustic reverberations in the open test section

were reduced through the use of sound-absorbing

panels on the test-chamber walls. A major opera-

tional improvement was achieved through the con-

struction of a specially-designed laser velocimeter

laboratory for setup and maintenance of the two-

component laser velocimetry system. Finally, an ad-

dition to the model preparation area, which includes

a support system and rotor test cell, provides the ca-

pability to assemble and test rotor models in hovering

conditions prior to actual entry into the tunnel.

THE CURRENT PROGRAM

The SAB is currently involved in both dynamic-

and static-testing activities related to improving

the low-speed aerodynamic performance of mili-

tary fighters, commercial transports, and rotorcraft
aircraft. The dynamic testing activities include

10

fundamental research to investigate the effects of

rate of descent and ground proximity on the aero-

dynamic performance of high-speed fighter and su-

personic commercial aircraft. As a result of this

research, a unique model-support system is being

fabricated which will properly simulate descent dy-

namics in the wind tunnel. Considerable dynamic

testing is also being conducted to study the effects

of various rotor-blade tip and fuselage modifications

on the aerodynamic performance of a typical rotor-
craft. Detailed flow-field measurements of the rotor

inflow and of the interaction of the rotor wake on the

fuselage have been obtained using a two-component

LV system. These measurements are being used to
validate several computer codes which predict rotor

performance. Counter-rotating- and tilt-rotor con-

figurations are also being tested to provide baseline
data for future rotorcraft development efforts.

The static testing activities are mainly involved

with studies related to commercial transport and mil-

itary aircraft. The subsonic-transport activities con-

sist primarily of experimental investigations of the

effects of turboprop wakes on wing spanload distri-

butions, turboprop engine placement on low-speed

performance, and of a heavy-rain environment on

high-lift performance. It is planned that this research
be expanded to include the integration of advanced

very high bypass ratio turbofan engines into a next

generation subsonic transport. The supersonic and

hypersonic transport activities consist of investiga-

tions to establish baseline low-speed powered and

unpowered take-off and landing performance char-

acteristics of advanced High-Speed Civil Transport

(HSCT) and National Aero-Space Plane (NASP)

configurations. The military fighter activities consist

primarily of investigations of the effects of vectored

thrust on low-speed take-off and landing and on high-

angle-of-attaek maneuvering. Additional high-angle-

of-attack research is being conducted to establish the

effects of scaling on forebody flow fields. Several re-
searchers within the SAB are also actively involved

with the application of existing computational meth-

ods for the low-speed aerodynamic analysis of the

various configurations being tested.

HIGHLIGHTS OF RECENT

RESEARCH

Static and Dynamic Ground Effects

Historically, there have been discrepancies

between the ground effects predicted from the wind-

tunnel tests of many aircraft configurations and

those actually experienced in flight. These differ-

ences have been greatest on vectored-thrust config-

urations. A wind-tunnel research program has been

ORIGINAL PAGE IS
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conducted to determine whether the absence of rate-

of-descent simulation in conventional ground-effects

testing could be the source of this discrepancy. Early

tests, using a model of the F-15 S/MTD, as shown
in the following figure, confirm the existence of the

STOL AND MANEUVER TECHNOLOGY DEMONSTRATOR

S/MTD probably sensitive to rate of descent

Ground effects in simulation data base are

based on steady-state wind-tunnel results

LaRC measured ground effects dynamically

influence of rate of descent on a thrust-vectoring con-

figuration of current interest. In general, the data
indicate moderate effects on the lift coefficient due

to rate of descent at low-thrust-vector angles; how-

ever, they indicate much larger differences between

the results from the two test techniques at higher

vector angles. Similar trends were seen in pitching
moment.

To achieve a simulated rate of descent, an in-

clined ground board was constructed within the test

section of the LaRC Vortex Research Facility. As

the model, traveling horizontally through the facility,

passed over the inclined ground board, the height of
the model above the ground reduced at a constant

rate-the simulated rate of descent. A comparison of

these results with those obtained using conventional

steady-state ground-effects testing techniques is pre-

sented in the figure below. Similar comparisons have

been made for a variety of other configurations and
show, conclusively, that the effect of sink rate should

DYNAMIC GROUND EFFECTS on F-15 S/MTD
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be represented in predicting ground effects for ad-
vanced vehicle designs. Based on the results to date,

a special dynamic-model-support system is being de-

veloped for the 14- by 22-Foot ST to study dynamic

ground effects.

Rotor Inflow Research

The fifth in a series of rotor inflow measurements

tests was conducted in the Langley 14- by 22-Foot

ST using a 2-Meter Rotor Test System and a laser
velocimeter for measuring ftow velocities. The pur-

pose of this U.S. Army/NASA program is to estab-
lish an experimental data base of rotor inflow and
wake velocities which can bc used for the validation

of computational methods that predict flow veloci-

ties near a rotor. In the most recent test, rotor in-

flow data were acquired for a four-bladed rotor with a

generic research fuselage. The data were measured at
180 locations in a plane approximately 3 inches above

the plane formed by the rotating blade tips for ad-

vance ratios (ratio of flight speed to rotor-tip speed)
of 0.23 and 0.30. Both average and time-dependent

data were acquired for each measurement location.

The predictions of various computational analyses of
rotor inflow were compared to the experimental data.

A photograph of the test model and a contour plot
of the mean-induced-inflow ratio are presented in the

figure below.

ROTOR

The experimental data show that as wind speed

is increased, the area of upflow induced by the ro-

tor moves progressively from the far-forward region
of the rotor disk to cover the complete forward half

of the disk. The induced-inflow characteristics at

all wind speeds are asymmetric about the longitu-
dinal axes of the rotor with the maximum down-

wash concentrated in the aft portion of the rotor disk,

skewed to the advancing blade side. The computa-

tional methods show significant differences from the

experimental data, indicating that improvements in

the methods are necessary for the proper calculation
of the flow conditions affecting rotor performance.

Advanced Turboprop Integration
Research

An exploratory research program has been con-
ducted in the 14- by 22-Foot ST to investigate

propeller installation effects on the low-speed aero-

dynamic characteristics of an advanced counter-
rotation turboprop configuration mounted in
several different chordwise locations above and be-

hind a wing. A 2-foot-diameter model of the General

Electric Unducted Fan (UDF) was used in combina-

tion with a 1- by 3-meter semispan wing as shown

in the figure; and tests were conducted for simulated
takeoff, cruise, and landing configurations. A total of

seven different propeller/wing positions were tested

for angles of attack ranging from -4 ° to 20 ° .

iNFLOW RESEARCi {
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Aerodynamic loads were measured on the wing
with a six-component balance, and oscillatory blade
stresses were measured on each row of the UDF

simulator by means of blade-mounted strain gages.
Several hundred pressure measurements were made

on the surfaces of both the wing and nacelle to

aid in identifying the sources of the aerodynamic

interference effects. A sample plot showing the effect

of propeller slipstream on the spanwise distribution

at lift on the wing is presented in the following figure.

Heavy-Rain Research

Since 1982, NASA has been studying the influence

of heavy rain on airfoil aerodynamic performance.

Small-scale airfoil tests in the 14- by 22-Foot ST

and large-scale airfoil tests at the Aircraft Landing

Dynamics Facility (ALDF) showed that a high-

intensity rainfall adversely affects airfoil performance.

Photographs of an NACA 64-210 wing section
mounted in the tunnel and on the ALDF test car-

riage are presented in the figure below. Aerody-
namic lift data were obtained with and without the

rain simulation system turned on for an angle-of-
attack range of 7.5 ° to 19.5 ° and for rainfall con-

ditions of 9 inches/hour and 40 inches/hour. The

results obtained at the 9-inch/hour rainfall condition

indicate a small reduction in maximum lift and only

a slight influence in the stall angle of attack. The

test results shown in the figure were obtained at the

40-inch/hour rainfall condition and show a 15-20 per-
cent reduction in observed maximum lift and a reduc-

tion from a dry-air stall angle of approximately 6°.

These results compare well with the previous small-
scale wind-tunnel results for the same airfoil section.

It appears that to first order, scale effects are not

large and the wind-tunnel research technique can be

used to predict rain effects on airplane performance.

Early analysis of the results of the experiments

indicated that blade stresses were very high for those

configurations where the wing wake passed through
a significant portion of the propeller disk, but the
stresses were reduced as the wake was moved toward

the outer edges of the disk. When the propeller was

positioned over the wing forward of the wing trailing
edge, increases in power caused increases in the basic

wing lift which increased the overall lift for the wing-
propeller combination. An analysis of the pressure

data indicated a favorable effect of the propeller on

the wing upper-surface pressure distribution for those

cases, but the measured propeller performance was

essentially unaffected by the wing pressures•

HEAVY RAIN EFFECTS RESEARCH .... .......

Data from this investigation are being incor- = ......

porated into a data base which is being used ._ _--
to identify and develop needed improvements in =_- _.........

computational fluid dynamics (CFD) capabilities for
design and analysis.

±
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TRANSONIC AERODYNAMICS BRANCH

THE MISSION

Develop and conduct research programs which

will improve understanding of transonic flows over

airplane and missile configurations. Conduct basic

and applied research using experimental and theo-

retical methods to dcvclop and improvc the perform-

ance, load characteristics, and stability and control

of all types of aircraft, missiles, and spacecraft in

both cruise and maneuvering flight at subsonic and

transonic speeds. Develop verified capability for

computer-aided design of aircraft at transonic cruise
and maneuver conditions. Methods must be

capable of designing complex configurations with

flexible wings, fuselages, stores, canards and/or hori-

zontal tails, and single or twin vertical tails. Develop

vcrificd prediction capability and understanding of
transonic attached and vortical fows over wings,

bodies, complete aircraft, and missiles. Conduct fun-
damental flow-modeling experiments to obtain data

required to verify advanced transonic CFD meth-

ods. Exploit laminar-flow technology and vorti-

cal flow to enhance aircraft performance. Develop

improved understanding of and methods for

reducing induced drag.
Responsiblc for the administration, operation,

and enhancement of the 8-Foot Transonic Pressure

Tunnel (8-Foot TPT) and the 7- by 10-Foot High-

Speed Tunnel (7- by 10-Foot HST). Support research
and development requests for experimental investi-

gations originated by other NASA organizations and

government agencies.
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THE FACILITIES

8-Foot Transonic Pressure Tunnel

The Langley 8-Foot Transonic Pressure _lnnel

(8-Foot TPT) is a variable-pressure, slotted-throat
wind tunnel with controls that permit independent

variations of Mach number, stagnation pressure and

temperature, and dew point. See figures below.

Air is circulated through the circuit by an axial

compressor located downstream of the test-section

diffuser and driven by an electrical drive system.
The test section is square with filleted corners and

a cross-sectional area approximately equivalent to

an 8-foot-diameter circle. The floor and ceiling of

the test section are axially slotted (approximately

6.9-percent porosity in the calibrated test region) to

permit continuous operation through the transonic

speed range. The side walls arc solid and fitted
with windows for schlieren flow visualization. The

contraction ratio of the test section is 20:1.

14
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Tunnel stagnation pressure can be varied from

a minimum of about 0.25 atm. at all test Mach

numbers to about 1.0 atm. at a Mach number of

1.2, about 1.5 atm. at high subsonic Mach numbers,
and about 2.0 atm. at Mach numbers of 0.4 or less.

Temperature is controlled by water from an outside

cooling tower circulating through cooling coils across
the corner of the tunnel circuit upstream of the

settling chamber. The tunnel air is dried until the

dew point temperature is reduced enough to prevent

condensation in the flow by use of dryers using silica
gel desiccant.

Based upon both centerline probe and wall

pressure measurements, generally uniform flow is

achieved over a test-section length of at least

50 inches at Mach numbers 0.20 to 1.20. The higher

the Mach number, the shorter the region of uniform

flow becomes. The tunnel is capable of achieving

Mach numbers to about 1.3, but most testing is lim-
ited to a maximum Mach number of 1.2 since the

calibrated region of the test section for M = 1.3 is
further downstream than for lower Mach numbers

and requires that a model be located further aft in
the test section.

The 8-Foot TPT is a very versatile wind

tunnel capable of supporting basic fluid dynamics

research as well as a wide range of applied aerody-
namic research. With the installation of screens and

honeycomb in conjunction with the recently com-

pleted Laminar Flow Control Experiment, the qual-
ity of the flow in the test section is suitable for

performing reliable code-validation experiments.

The test section is already instrumented with many

ceiling, floor, and side-wall pressure orifices and

more could be easily added if desired. In addition,

fixed chokes and test-section slot covers are currently

being designed which would permit data to be

obtained on both open- and closed-tunnel configu-

rations as well as improve the flow quality in the test

section by blocking upstream propagation of diffuser
noise.

7- by 10-Foot High-Speed Tunnel

The figures below show the LaRC 7- by 10-Foot

HST. This tunnel is a closed-circuit, single-return,
continuous-flow atmospheric tunnel with a solid-wall

test section 6.6 feet high, 9.6 feet wide, and 10 feet

long. The tunnel is fan driven and is powered by

a 14,000-hp electric motor. It operates over a Mach

number range from 0.0 to 0.9 to produce a maximum

Reynolds number of 4 x 106/foot. In addition to

static testing of models to high angles of attack and

large sideslip angles, the facility is equipped for both

steady-state roll and oscillatory stability testing.

7- BY 10-FOOT HIGH-SPEED TUNNEL

Acoustic baffles-_ Air outlet

/-Fan _

I

Test I screens J
section J

The facility has an important role in a wide

range of basic and applied aerodynamic research,

including advanced vortex-lift concepts, drag-
reduction technology, highly-maneuverable aircraft

concepts, and the development of improved aerody-

namic theories, such as the dil_c,,lt separated-flow

and jet-interaction effects needed for computer-aided

design and analysis. The facility's flow-visualization
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capability has been upgraded through the installa-

tion of a permanent laser-vapor-screen system.

THE CURRENT PROGRAM

Currently, the Transonic Aerodynamics Branch

(TAB) is conducting experimental, computational,

and applied aerodynamic research to develop im-

proved understanding of transonic attached and vor-

tical flows over bodies, wings, complete aircraft,
and missiles. Research is also underway to develop

methods for controlling the vortical flows to improve

high angle maneuvering performance of fighter air-
craft. As part of this effort, extensive studies of

the ability of advanced CFD methods for predicting

subsonic/transonic vortical flows are underway.

Research studies are underway to develop

mcthods and procedures for design of advanced air-
plane concepts. The current focus of this work is

to develop the capability for computer-aided design

of advanced subsonic/transonic transport configura-
tions with emphasis on cruise performance. Meth-

ods to design at multiple design conditions are also

bcing developed. An important clement of this

research is the development of fast, accurate flow

solvers for predicting transonic flow over complex

configuration geometries. Research is underway to-
ward developing and assessing the capabilitics of un-

structured Euler solvers for accomplishing these ob-

jectives. Research is also underway to develop under-

standing and procedures for applying the

aerodynamic-design methodology in a multidisci-

plinary environment.

Experimental studies arc being conducted to

develop increased understanding of the causes of

induced drag. Once understanding is obtained, con-

cepts for reducing drag due to lift will be developed.

Preliminary research for induced-drag reduction is

underway with studies of winglcts on advanced high-

aspect-ratio transport wings and the use of wing-

tip blowing as a means of increasing the "effective"

aspect ratio of a wing.
Experimental studies in support of the HSCT

Initiative and the National Aero-Space Plane (NASP)

Program are also underway.

HIGHLIGHTS OF RECENT

RESEARCH

Navier-Stokes Solutions For Asymmetric

Vortical Forebody Flows

Asymmetric vortex shedding arises when slen-

der bodies, typical for missiles and fighter aircraft

noses, are set at large angles of attack (typically

greater than 30°). Under these conditions, side forces
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occur which become so large that they dominate

the lateral stability of these vehicles. Experimental

surface-pressure data suggested that small geomet-

ric imperfections, such as an out-of-round tip of a

sharp-nosed wind-tunnel model control, caused such

vortex asymmetries along the entire body. This is

confirmed in the present computational study, where

the surface geometry of a 3.5-caliber tangent-ogive

cylinder is perturbed into slightly elliptic cross sec-

tions just at the nose tip.

Steady-state solutions for vortical flows with

0.2 million < ReD __ 3.0 million (D: maximum di-

ameter) and 20 ° _< alpha < 40 ° have been obtained

using FMC1, a time-implicit upwind method for

the three-dimensional, incompressible Navier-Stokes
equations. This solver comprises flux-difference split-

ting, a TVD-like discretization of the inviscid fluxes,

and an extension to the algebraic turbulence model

by Baldwin and Lomax which allows, for the first

time, computational modeling of transitional cross-

flow separation (i.e., flows with three-dimensional,
laminar, equatorial separation bubbles and subse-

quent transition in the separating shear layers which

roll up into two primary vortices).

By rotating the perturbed nose tip, the computed

surface pressures indicate an almost sinusoidal vari-

ation of side force with roll angle while the vortex

shedding frequency remains close to a fixed value.

These two integral properties and the computed

surface-pressure distributions themselves agree well

with experimental data. A typical result is shown

for alpha = 40 ° and Re D = 0.8 million. The com-

puted flowfield is visualized by means of helicity den-

sity contours (helicity density is defined as the scalar
product of the local velocity and vorticity compo-

nents) which are superimposed on a surface-flow pat-
tern. The figure above shows four vortex shedding



eventsandtheir spatialfrequency,l_lrtheranalysis,
usingcomputationalflow-visualizationtechniques,
showedthat maximumlocalsideforceis associated
withonedominantprimaryvortexin thewakeandan
asymmetricarrangementof the lateralprimarysep-
arations.Minimumlocalsideforceis distinguished
byprimaryvorticesof aboutequalstrengthandan
almostsymmetricseparationpattern.

TransonicNavier-StokesSolution About A

High-Speed Accelerator Configuration

The design of the proposed NASP will inevitably

rely heavily on CFD to complement and extend in-

formation obtained in current ground test facilities.

The present investigation is directed toward apply-

ing an advanced CFD code to a generic NASP-Iike

configuration at transonic-flow conditions which may

be conducive to flow separation.

An accelerator configuration recently tested in the

LaRC 16-Foot Transonic Tunnel (16-Foot TT) was

selected for the study. This model was comprised

of a cone-cylinder-frustum body, a wrap-around en-

gine nacelle, forebody and aftbody engine fillets,

and a 70 ° delta wing at incidence. The con-

figuration surface was represented analytically; a

blocked flow-field domain of approximately 373,000

points was then constructed with hybrid topologies

using established transfinite interpolation methodol-
ogy. Steady-state solutions to the compressible thin-

layer Navier-Stokes equations were obtained with an

implicit finite-volume algorithm (CFL3D) developed
at LaRC.

These solutions were achieved using Van Leer's

upwind-biased, flux-vector-splitting technique and
an extended version of the Baldwin and Lomax

algebraic turbulence model.

Turbulent results have been obtained at an angle

of attack of 2 °, a Reynolds number of approximately

30 × 106 (based upon the total body length), and
a Mach number of 0.9. Mach contours on the sur-

face and in the plane of symmetry demonstrate a

smooth solution in the figure above for the blocked

representation of this configuration. After a subsonic

and mainly attached forebody flow, the flow acceler-

ates supersonically at the cowl-lip of the faired-over

engine inlet and subsequently shocks down at the ex-

haust cowl-lip. (The sonic line is represented with a

white contour line in the plane of symmetry to high-

light the supersonic flow region.) The shock produces

an adverse pressure gradient which causes the flow to

separate massively and envelop the boattail region.

Predicted forebody pressures agree with experimen-

tal data reasonably well; a qualitative prediction of

the separated boattail flow is also achieved.

Navier-Stokes Solutions For The F-18

Forebody-LEX

Advances in numerical solution methodology

along with increased computer speed and capacity
have made it feasible to seek numerical solutions

to the three-dimensional Navier-Stokes equations at

flight Reynolds numbers for relatively complicated

aircraft geometries. As a step toward modeling a
complete aircraft, turbulent Navier-Stokes solutions

have been achieved for the forebody leading-edge

extension (LEX) portion of the F-18 High Alpha

Research Vehicle (HARV).
The surface definition of the configuration was

obtained from a detailed CAD/CAM description of a
6-percent F-18 wind-tunnel model. A longitudinally-

blocked grid of approximately 185,000 points was

generated with an H-O topology using established

transfinite interpolation methodology. A solution for
the flow was then obtained from a version of CFL3D

recently extended for longitudinally-blocked grids.
CFL3D models the compressible full Navier-Stokes

equations by a finite-volume technique which incor-

porates an upwind-biased, flux-difference-splitting

approach. Turbulence effects were represented by an
extended version of the Baldwin and Lomax algebraic
turbulent model.

A representative turbulent solution is shown in

the following figure for a Mach number of 0.34, a

Reynolds number of 13.5 million (based on the wing

mean-aerodynamic chord), and an angle of attack

of 19 ° . These conditions correspond to recent flight

tests of the NASA F-18 HARV at the Dryden Flight

Research Facility. The flight tests were focused

on documenting the forebody surface-flow pattern;

this result qualitatively compares well with the com-

puted turbulent flow pattern as shown in the figure.
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The flowpatternon the aircraftwasgeneratedby
emitting a fluid mixture of propyleneglycol
monomethylether(pgme)anddyefromsurfaceori-
rices. After flowingdownthe forebody,the pgme
evaporatesleavingthedyepatternshown.Numerical
convergencecorrespondedto a twoto threeorder-of-
magnitudereductionof theresiduals.Thisrequired
approximately2400cyclescorrespondingto approxi-
matelytwohoursofCRAY-2time. Computationsfor
otherflightconditions,aswellasforamorecomplete
configurationrepresentation,areunderway.

[NAVIER-STOKES P_ED,!CT!0N O_F FLIGHv.__TT

M =o.3,.-,c ,,=19:ii
Flight Test I ITurbuleni Navier:Stoke_
F-18 HARV i J CFL3D

Wind Tunnel'To-Flight Correlations

Correlations have been made of the vortex flows

visualized in wind-tunnel and flight experiments of

the Navy/McDonnell Douglas F/A-18. This work
was conducted to establish the degree to which

the vortical flows in wind-tunnel testing of subscale

fighter models represent the flow-field behavior in
flight at full scale. The wing LEX vortices about

a 6-percent-scMe model of the F/A-18 were visual-

ized in the David Taylor Research Center (DTRC)

7- by 10-Foot Transonic Wind 33mnel using a laser-

vapor-screen technique. The vortex structure, tra-

jectories, and breakdown characteristics observed at

subsonic speeds (M = 0.30 and 0.40) in the wind tun-

nel were compared to the off-body flow visualizations
obtained on the full-scale F-18 HARV at the NASA

Ames/Dryden Flight Research Facility. (See first fig-

ure below.) The Reynolds number based on the win_
mean aerodynamic chord was approximately 1.7 × 10 U
in the wind tunnel and 13.5 × 106 in flight. The ex-

periments were conducted as part of the NASA F-18

High-Alpha Technology Program.

The present study showed a high degree of
correlation of the vortex flows about the small-scale

wind-tunnel model and the F/A-18 aircraft. The
structure and location of the LEX vortical flows were

18

similar. The onset of vortex breakdown, its for-

ward progression with increasing angle of attack, and
the interaction of the burst vortex with the twin

vertical stabilizers compared well in the wind-tunnel

and flight experiments. The physical mechanism for

the effectiveness of the LEX upper-surface fences in

reducing the vertical tail buffet was first identified

in the wind-tunnel testing and, subsequently, con-

firmed in the flight experiments. The off-body flow-

field observations on the 6-percent-scale model and

the F-18 HARV showed an upward displacement and

restructuring of the LEX vortices with the fences

on. (See second figure below.) The test results

also demonstrated the usefulness of applying differ-

ent flow-visualization techniques to improve the un-

derstanding of complex vortical flows. For example,
the diffuse nature of the LEX vortex downstream of

the fence resembled the "classical" vortex breakdown

phenomenon due to the rapid increase in the size of

the vortical region. However, illumination of the vor-
tex cross flow with the intense sheet of laser light

in the wind tunnel revealed a weakened system of

co-rotating vortices that had not burst.

COMPARISON OF F-18 LEX VORTEX BREAKDOWN
CHARACTERISTICS - FLIGHT AND WIND TUNNEL RESULTS

o Flight Smoke _. M= - 0.3

Flight Natural condensation J Re_ = 13.5 (106)
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A Fast Upwind Solver For The Euler

Equations On Three-Dimensional
Unstructured Grids

One of the major difficulties in computational

fluid dynamics is the accurate and efficient rep-

resentation of flow fields about complex configu-
rations. A computer code, USM3D, has been

developed to solve the steady-state Euler equations

about arbitrary configurations in three dimensions on

unstructured tetrahedral grids using a finite-volume

technique that incorporates an upwind-biased, flux-

difference-splitting approach. The code uses a

new algorithm which achieves computational efficien-
cies comparable to those of structured codes with

nominally 50 percent more memory than typical
structured codes.

A BOEING 747 CONFIGURATION

US.MaD

A sample result for a Boeing 747-200 with flow-

through nacelles is portrayed in the figure above

which shows both the surface grid as well as shaded

Mach contours for M = 0.84 and alpha = 2.73 °.

The grid consists of 105,372 cells, 19,698 nodes,

8402 boundary faces, and 4195 boundary nodes.

The original figure shows red contours on the wing
which indicate a region of supersonic flow which

is terminated by a shock wave where the contours

transition to yellow. This solution was obtained with

a CFL number of 3 in 1600 cycles for a decrease in

the L2-norm of 3.7 orders of magnitude. The solution

required 1 hour and 40 minutes of Voyager CRAY-2S

time and used less than 8 megawords of memory.

Application Of A Transonic Design
Method To Complex Geometries

During the past 5 years, NASA LaRC has been

involved in several research programs which had the

requirement of designing or modifying a wing to
achieve a given pressure distribution at transonic

speeds. In order to meet this requirement, a design
method was developed which modifies the surface

curvatures and slopes of an initial airfoil geometry so
that a target pressure distribution is matched. The

Direct Iterative Surface Curvature (DISC) Method
was then extended to wings and found to be robust

and efficient. The method has been useful in design-

ing wings in the presence of other aircraft compo-

nents such as winglets, fuselages, and nacelles. It can
be used to achieve a given pressure distribution and

thus reduce or eliminate undesirable flow character-

istics or adverse interference effects between different

components.

The surface curvature method has been used

in a number of design exercises involving complex

geometries. Results for an executive transport with

fuselage-mounted nacelles are shown in the figure

below. The sketch on the left shows a wing root

plug (cross-hatched area ahead of the nacelle) to be

added to the existing wing. The flow in this re-

gion is strongly influenced by both the fuselage and

nacelle. The original wing plug has a fairly strong

shock near 40 percent chord (right half of figure).

The design method was used successfully to modify

the wing to eliminate this shock and to give a more
uniform isobar pattern in this region.

WING ROOT DESIGN TO ELIMINATE SHOCK

J

M = 0,74

-a
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HIGH-REYNOLDS-NUMBER AERODYNAMICS BRANCH

THE MISSION

Conducts theoretical and experimental research

to develop Reynolds-number-scaling techniques for

configurational aerodynamics as well as basic fluid

mechanics phenomena at subsonic and transonic

speeds. This research includes investigations of

Reynolds-number scaling for: shock/boundary-layer
interaction, vortical flows, juncture flows, attached

flows (skin friction), control effectiveness, high-lift

systems, stores integration, and propulsion inte-

gration. The research is conducted utilizing the
National Transonic Facility (NTF) (see figure below),

the latest computational techniques, and flight exper-

iments. Because of the cryogenic and high-pressure

environment of the facility, supporting research in-

cludes the development of experimental techniques
and instrumentation which are compatible with the

harsh environment of this facility; development of

new instrumentation includes flow-visualization sys-

tems and a boundary-layer transition detection sys-

tem. In an effort to continually improve the quality of

the experimental data obtained from the NTF, stud-

ies are carried out to develop better wall and support

interference-correction procedures.

The HRNAB is responsible for the administra-

tion, operation, and enhancement of the NTF to
accomplish the national high-Reynolds-number test

requirements; and, as such, support research and

development requests for experimental investiga-

tions originated by other NASA organizations and

government agencies.
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THE FACILITY

National Transonic Facility

The National Transonic Facility (NTF) is a tran-

sonic wind tunnel primarily intended to provide

a high-Reynolds-number capability for aerodynamic
research and the developmental testing of commer-

cial and military aircraft configurations. The NTF is

a closed-circuit, single-return, fan-driven wind tun-

nel capable of continuous operation and capable of
achieving a chord Reynolds number of 145 million/ft

at a Mach number of 1.0 by operating at elevated

pressures and cryogenic temperatures. The NTF can

operate at Mach numbers from 0.2 to 1.2, stagnation
pressures from 1 to 9 arm., and stagnation tempera-

tures from 140 ° F to approximately -260 ° F. In the

cryogenic mode of operation, nitrogen is used as the

test gas, with cooling accomplished by the injection

of liquid nitrogen directly into the tunnel circuit. At

ambient temperatures, air is used as the test gas with

cooling accomplished by a conventional water-cooled

heat exchanger inside the tunnel circuit. See figure

below for plan of tunnel circuit.
The test section is square, 8.202 feet wide, with

small flat fillets at 45 ° angles in the corners resulting
in a test-section cross-sectional area of 66.77 ft 2.

There are six longitudinal slots in the test section top

and bottom walls. The length of the slotted region is

approximately three test-section widths. The vertical

walls are parallel and fixed during testing; the top
and bottom walls have flexures at the upstream end

which permit variation in wall angle from about 0.5 °

converged to 1.0 ° diverged. Generally, test models
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will be sting supported from a circular arc strut

permitting a pitch range of 30 °, nominally -11 ° to

19°; but this can be varied using offset sting supports.

The model roll-angle range is +180°; sideslip angles

are obtained from combinations of the pitch and

roll. Plans are currently underway to provide for

wall-mounted half-span models in the test section

for tests where large model sizes are required. The

maximum allowable model loads for a sting-mounted

model are: normal - 19,500 lb; axial - 9,356 lb; and

side - 10,000 lb.

NATIONAL TRANSONIC FACILITY

PLAN OF TUNNEL CIRCUIT

200 ft

LOW SPEED DIFTUSER_ FAN_
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Construction of the NTF was completed in

September 1982; it was declared operational in

August 1984.

CURRENTPROGRAMS

The basic challenge for the HRNAB is the

development of Reynolds-number-scaling techniques

for subsonic (incompressible and compressible) and
transonic flow fields. This area of research is

very broad and presented below is a brief discus-

sion of some of the specific areas of study. One

area of research is validating and developing scaling

procedures for: (1) drag associated with transport

configurations at near-design conditions and (2) su-

percritical pressure distributions obtained from a

high-wing-transport test in the NTF. In order to

obtain the best possible data from the cryogenic

high-Reynolds-number facility, there is a continuing
effort to develop better instrumentation and test

techniques; in this regard, there is an effort to de-

velop an infrared transition detection system capa-

ble of operation at cryogenic temperatures. To bet-

ter understand Reynolds-number effects on control

effectiveness, there is a study underway to develop

a numerical procedure to accurately characterize the

flow fields around subsonic and transonic expansion

corners at high-Reynolds numbers; this study has

direct application to aileron flow fields. Utilizing a

high-speed civil transport configuration and a delta-

wing model, an investigation is underway to develop

vortical scaling techniques for leading-edge vortices.

The investigation of juncture flows from a configura-

tional, as well as a basic fluid mechanics perspective,

has been initiated with experimental studies. To as-

sist in not only aircraft design but also in improved

wind-tunnel-testing procedures, an investigation is

underway to develop a technique to predict buffet on-

set for subsonic transport wings across the Reynolds

number range of the NTF.

HIGHLIGHTS OF RECENT

RESEARCH

High-Reynolds-Number Wake
Measurement on Submarine Model

A research program sponsored by NASA and

the Navy was conducted in the NTF to investigate

Reynolds number (Rn) effects up to 50 million/foot

on the complicated flow field around the stern of a

20 foot-long submarine model as shown in the figure

below. Near the stern of the model, five-hole pitot-

pressure probes and triaxial hot-film probes were lo-
cated at 10 different radii from the hull centerline to

the maximum hull radius. These probes were rotated
360 °, in steps of 1.8 °, to map the wake flow. Addi-

tionally, surface and boundary-layer measurements
on the hull were obtained.

The data presented are the circumferential mean

axial velocity, U, at each probe distance from the
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surface, r. These data indicate that the mean ve-
locity flows are significantly affected by Reynolds
number. (See figure below.)

)

Rn =2x

Localsurface-_ [_c:_ _- Rn = 109

U

Reynolds number effects on mean azial velocity in
wake.

Transonic Reynolds Number Effects for a
Slender Wing/Body Configuration

A wind-tunnel investigation was conducted in
the NTF to determine the Reynolds-number ef-
fects on the transonic aerodynamics of a slender
wing/body configuration. The model was comprised
of a cone-cylinder-frustum body along with a unit
aspect-ratio delta wing and was representative of a
class of vehicles capable of very high-speed flight.

Tests were conducted at Mach numbers ranging from

0.3 to 1.15 and Reynolds numbers ranging from
18 × 106 to 180 x 10"(based on body length). Both

longitudinal and lateral-directional force and mo-
ment data were obtained. At 0° sideslip and high

angles of attack, asymmetric flow separation oc-
curred causing significant lateral-directional forces

and moments. A sample result is presented for the
yawing moment at 0° sideslip. The data demonstrate
significant Reynolds number effects above an angle of
attack of approximately 14° . The low Reynolds num-
ber data show a nonlinear reversal in the yawing mo-
ment trend with angle of attack above 14° , whereas
the high-Reynolds-number data do not evidence this
effect in the angle-of-attack range investigated. The
high-Reynolds-number data also show evidence of in-
creased compressibility effects at the high angles of
attack. See figures below.

Re = 24 x ]06

- 4 _ 12 _5 20

Rt = 90 x IO s

-4 0 a 8 12 '_ ;O

Rtj lmlds l_umber erect (,n jawing m_nl
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SUPERSONIC/HYPERSONIC AERODYNAMICS BRANCH

THE MISSION

The Supersonic/Hypersonic Aerodynamics
Branch (SHAB) conducts theoretical and experimen-
tal research to improve the high-speed aerodynamic
performance for civil transports, high-performance
military aircraft, and missiles. The research efforts
are focused both on developing the fundamental tech-
nology base and on specific technology applications.

This research includes investigation of basic flow phe-
nomena as well as the development and assessment of

new concepts related to aerodynamic loads, perform-
ance, heating, stability, and control for these vehi-
cles. Supporting research includes the development
of new experimental techniques and computational
methods for design and analysis.

Performs research directed toward the develop-
ment of analytical methods for the aerodynamic de-
sign and analysis of advanced missiles and

aircraft. The work is accomplished by adaptation
of established procedures, independent in-house de-
velopment, and contract and grant activities. When
possible, analytical work is supplemented by related
experimental studies. Emphasis is placed on
computer-implemented methods capable of a reason-
able degree of accuracy compatible with requirements
of user convenience, solution speed, and breadth
of applicability. The work encompasses studies of

wave drag, skin friction, drag due to lift, static and
dynamic stability and control, aerodynamic
interference, and flow-field properties.

Originates and develops new and innovative
aerodynamic-missile concepts and provides the tech-
nology base required for these concepts to be incor-
porated into future system designs. A companion
activity evaluates both experimentally and analyti-
cally the performance of existing missile systems and
executes further studies which will lead to the devel-

opment of technology to improve these systems.
Responsible for the operation of the Unitary Plan

Wind Tunnel (UPWT), the 20-Inch Mach 6 Wind
Tunnel (20-Inch Mach 6 WT), and the Mach 8
Variable Density Tunnel (Mach 8 VDT). Develops
new test methods and data-reduction techniques for
these facilities and coordinates in-house research pro-
grams, cooperative studies, and studies in support of
industry, DOD, and other government agencies.
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THE FACILITIES

Unitary Plan Wind Tunnel

Immediately following World War II, the need
for wind-tunnel equipment to develop advanced air-

planes and missiles was recognized. The military
and the National Advisory Committee for Aeronau-
tics (NACA) developed a plan for a series of fa-
cilities which was approved by the United States
Congress in the Unitary Wind Tunnel Plan Act of
1949. This plan included five wind-tunnel facilities,
three at NACA laboratories and two at the Arnold
Engineering Development Center. The LaRC UPWT

was among the three built by NACA. (See figures
below.) The UPWT is a closed-circuit, continuous-

flow, variable-density tunnel with two 4- by 4- by
7-foot test sections. The low-range test section has
a design Mach number range of 1.5 to 2.9, and
the high-range section Mach number varies from 2.3
to 4.6. The tunnel has sliding-block-type nozzles
which allow continuous variation in Mach number

while on-line. The maximum Reynolds number per
foot varies from 6 × 106 to 12 x 106 depending on
Mach number. The tunnel is used for force and mo-

ment, pressure distribution, jet effects, dynamic sta-
bility, and heat-transfer studies. Flow-visualization

data, which are available in both test sections, in-
clude schlieren, oil flow, and vapor screen. Since this

facility came on-line in 1955, it has averaged over
1000 hours of operation per year. A major portion
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of the investigations performed in this facility deals

with determining stability, control, and performance
characteristics of supersonic aircraft.

system center of rotation, two 9- by 17-inch rectan-

gular windows aft of the round ones, one 11.5- by
17.5-inch rectangular window on top of the test sec-

tion, and one 12-inch-diameter window slightly aft of

the rectangular one. This facility was constructed

in 1958. A major upgrade is currently underway

which includes on-site data acquisition�reduction, a

closed-loop model-positioning system, and an im-

proved flow-field survey mechanism. See figures
below.
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20-Inch Mach 6 Wind Tunnel

The 20-Inch Mach 6 WT is located in the Gas

Dynamics Laboratory. This facility operates in the
blow-down mode and has a fixed two-dimensional

nozzle with parallel sidewalls which lead to the

2- by 25-inch test section. Pressure can be varied

from approximately 30 to 470 psia and total temper-

ature up to 500 ° F. The supply air is heated with an

electric resistance heater. The tunnel discharges to
either vacuum spheres or to the atmosphere with the

aid of an annular ejector. The model support sys-

tem has remote controls for angles of attack and yaw

and can be injected/retracted. A remotely controlled

three-degree-of-freedom flow-field survey mechanism
is available. Typical tests include force and moment,

pressure, and heat transfer. Flow visualization in-
cludes schlieren, oil flow, and vapor screens. Opti-
cal access includes two 16-inch-diameter windows on

each side of the test section near the model support

ORIGINAL p_,_ _'
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Mach 8 Variable Density Tunnel

The Mach 8 VDT is located in the Gas

Dynamics Laboratory (see figures below). This

facility has an axisymmetric nozzle which leads an
18-inch-diameter test section and exhausts to a vac-

uum sphere. Total pressure can be varied from 15

to 3000 psia and total temperature up to 1050 ° F.

Reynolds number per foot varies from 0.1 × 106 to

12 × 106. The supply air is heated with an electric

resistance heater. The model support system is re-

motely controlled for angle of attack and is manually
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adjustablefor angleof yaw. Opticalaccessincludes
two 12-inch-diameterwindowson eachsideof the
test sectionandtwo 5-by ]4-inchrectangularwin-
dowsin thetest-sectionceiling.Typicaltestsinclude
forceandmoment,pressure,andheattransfer.Flow

•visualizationincludesschlierenandoil flow.

M 8 VDT

To
vacuum

Settling - 18-inch-diam sphere

Model injection _J

system To
vacuum
sphere

(low flow)

This facility was constructed in 1952. It has been

on standby status since the mid-1970's. A major

rehabilitation is currently underway which includes

supply air filters, a new nozzle, and a new test
section. It is anticipated that this facility will return

to an operational status in mid-1991.

THE CURRENT PROGRAM

The current supersonic program is focused on

HSCT and high-performance military aircraft

research. In support of HSCT, NASA LaRC has

initiated a High-Speed Airframe Integration

Research (HiSAIR) activity to combine the tech-

nology developments from aerodynamics, structures,

electronics, flight controls, etc. The SHAB is

presently providing the supersonic aerodynamic in-

formation for this activity by testing an HSCT wind-

tunnel model and using computational methods to
scale the data from wind-tunnel model to aircraft-

flight conditions. In support of both HSCT and

high-performance military aircraft research, the

SHAB has ongoing research to develop performance-

improvement technologies such as friction-drag

reduction using natural laminar flow, leading-edge

vortex flow management techniques, conical-flow

wing designs, and component arrangements for posi-

tive interference. Also in support of high-performance

military aircraft, experimental and computational

studies to determine store-carriage drag and sepa-

ration characteristics are producing new and inno-

vative performance improvement concepts; and, in

cooperation with several DOD agencies, studies of

foreign missiles are being performed to assess the

present threat. Studies are also underway to upgrade

existing U.S. missiles.

For the past several years, the hypersonic pro-

gram's primary focus has been in developing tech-

nologies directly in support of the NASP Program;

however, there has also been a small but very suc-

cessful effort in developing a new class of waverider

aerodynamic shapes which are optimized including
viscous effects. The NASP activity is addressing

the very difficult problem of studying the airframe-

propulsion integration issues by wind-tunnel testing
of powered models in small hypersonic facilities and

applying appropriate CFD codes. To facilitate this

activity without compromising the NASP contrac-

tor's proprietary information, NASA LaRC created

the Test Techniques Demonstrator (TTD) which is a

generic NASP-like concept. The SHAB is presently

testing and analyzing the following three TTD mod-

els: (1) an unpowered model of the complete TTD to

determine static and dynamic stability and unpow-

ered performance, (2) an unpowered forebody-inlet

model to study forebody-inlet interactions and deter-

mine forebody forces, and (3) a powered model of the

complete TTD with metric afterbody to determine
external nozzle characteristics. The waverider re-

search is proceeding with the experimental and com-

putational evaluation of both a Mach 4 and Mach 6

design; if the evaluation produces promising re-

sults, airframe-propulsion integration studies will be
initiated.

HIGHLIGHTS OF RECENT

RESEARCH

Test Technique Demonstrator Forebody

Redesign

The design of scramjet-powered hypersonic

vehicles is mainly driven by the necessity to ob-

tain good propulsion/airframe integration. The
airframe must provide efficient compression and ex-

pansion surfaces for the scram-jet propulsion system.

In support of the NASP Technology Maturation Plan
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(NASP TMP), the LaRC's TTD was designed to
address these issues. Unfortunately, studies of

the original TTD geometry revealed undesirable

forebody-flow characteristics. Therefore, an effort

was undertaken to computationally redesign the

TTD forebody to eliminate or minimize the un-
desirable characteristics. The flow-characterization

study of the original TTD geometry identified three

undesirable characteristics: (1) unexpected fore-

body shocks, (2) significant lower-surface inflow, and

(3) substantial centerline boundary-layer accumula-

tion. To address these problems, geometry modi-

fications to the TTD were parametrically evaluated

using the CFL-3DE Parabolized Navier-Stokes (PNS)

computational method. As shown in the figure be-

low, the geometry modifications which were incorpo-
rated influenced the x-momentum and resulted in a

more uniform boundary layer at the inlet face. Fur-

thermore, examination of particle trace, surface pres-

sure, mass flow, and drag data indicates that the

Mod 2D geometry modifications eliminate the un-

desirable forebody shocks as well as significantly in-

creasing inlet-face mass flow and reducing forebody

drag. Wind-tunnel models of the modified TTD were
fabricated and a validation test was conducted in

the 20-Inch Mach 6 facility. Oil-flow, schlieren, and

inlet-face pitot-pressure data were obtained and com-

pared with similar data for the original TTD. Com-
parison of these data validated the modified TTD

redesign which greatly enhances the TTD inlet-face
flow quality, making it more representative of NASP

TMP goals and more suitable for conducting scram-
jet propulsion/airframe integration studies.

Mod 2D

Scramjet Exhaust Simulation Studies

Hypersonic, airbreathing vehicles require careful

integration of the scramjet propulsion system and the
airframe since the airframe afterbody also serves as

an external nozzle surface for the scramjet. The ex-

haust flow pressure field yields a large thrust and

pitching moment that affect the total vehicle perfor-

mance. It is impractical to perform combustion in a

small-scale wind-tunnel model; and, therefore, other

means of simulating the scramjet-exhaust pressure
field must be used.

A study was performed at Crumman Aerospace

Corporation under NASA contract to identify cold

gases which correctly simulate the pressure field of

a hot scramjet exhaust. This study showed that

a mixture of Argon and Freon correctly matches

the inviscid exhaust simulation parameters of com-

bustor exit Mach number, static-pressure ratio, and

the ratio of specific heats. These findings were

experimentally validated against hydrogen-air com-

bustion products in a shock tunnel at Mach 6

and 8. Subsequently, the Argon/Freon scramjet-
exhaust-simulation technique was adopted for use in

long-duration conventional hypersonic tunnels. The

following figure shows a generic hypersonic vehicle

afterbody model which uses substitute gases. The
cross-hatched area on the external nozzle surface in-

dicates the area instrumented with pressure ports.

Experimental surface-pressure data are shown com-

pared with computed results from a two-dimensional
Euler code, SEAGULL, and a two-dimensional full

Navier-Stokes code developed by Dr. Oktay Baysal

of Old Dominion University. At the free-stream con-

dition of Mach 6, the surface pressures inside the

flow fence are well predicted by both computational
methods.

2-D CFD PRESSURE PREDICTION
ON EXTERNAL NOZZLE

Argon/Freon Exhaust Simulation
M_=6 NPR=120
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Aerodynamics Of A Tactical Missile With

Opposing Wrap-Around Tail Fins

Tube-launched tactical missiles often employ

wrap-around fins which can be folded against the
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missile body for compact storage within the launch

tube. These fins are normally curved in the same
direction to match the body surface, with each fin

covering about one-fourth of the body circumference
when folded. When these curved fins are used as tail

surfaces, mechanical deployment can be a problem

due to the limited space available in the aft region of

a missile. Another method of deploying this type of
fin is to use the energy of the rocket exhaust to blast

the fins into their deployed position. This method

would require four side-mounted exhaust ports to

deploy the four conventional wrap-around fins.

A study was conducted on an alternate design

whereby the fins are mounted on the body in oppos-

ing pairs, with one folded beneath the other prior to

deployment. In this manner, only two nozzles would

be required to deploy all four fins. This configura-

tion has vertical symmetry; thus, it will not pos-

sess the inherent rolling motion of the conventional

wrap-around design. To permit this configuration to

be controlled with simple planar canards, a rolling

moment must be produced on the configuration. One

unconventional method of achieving this moment is
to shave very shallow bevels on each tail fin.
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Tail fins with and without beveling were tested at

low supersonic Mach numbers, over a range of angles

of attack, roll angles, and canard-deflection angles.

Typical rolling-moment characteristics for this con-

figuration are shown in the figure above. The un-

beveled tails and the body alone produce very little

rolling moment. The beveled tails, however, intro-

duce a substantial rolling moment to the configura-

tion. Moreover, this moment is virtually constant

with angle of attack. Thus, shallow beveling of the

opposing wrap-around tail fins appears to be an effec-

tive method of producing the desired rolling motion
for this configuration.

Multigrid Solutions Of Navier-Stokes

Equations On Overlapped Grids

One of the limitations in solving the partial-

differential equations of the fluid flow is the ade-

quate discretization of the physical domain about

complex configurations. One method of avoiding this

limitation is to decompose the giobal-flow domain

into overlapped subdomains, which can accept easily

generated, fairly smooth, and curvilinear component

grids with no singularities. The Multi-Geometry-

Grid-Embedder (MaGGiE) computer code is devel-
oped, based on the Chimera code of NASA Ames

Research Center and Calspan AEDC. It generates

overlapped composite grids at sequentially coarser
levels for a multigrid and finite-volume solution

scheme. Regions of a component grid common to

the others are removed; thus creating holes, to avoid
excessive interpolation.

The CFL3D computer code is modified to solve

the complete Navier-Stokes equations and perform
multigrid convergence acceleration despite the ex-

istence of holes and overlapped regions. Hence,

this CFL3D-based computer code (VUMXZ3) solves
the viscous-flow equations using an upwind, multi-

grid scheme on Chimera-type overlapped grids and

zonal grids. It combines the advantages of an ef-

ficient, geometrically conservative, and minimally

dissipative solution algorithm with the flexibility

of the domain decomposition using overlapped or

nonoverlapped grids.

The supersonic flow past an ogive-nose cylinder

in the proximity of a flat platehas been simulated to

test the applicability, accuracy, and convergence at-

tributes of MaGGiE and VUMXZ3 codes. (See figure

below.) Currently, the flows past an ogive-nose cylin-

der with an L-shaped sting in and near a rectangular
cavity are being simulated. Wind-tunnel tests have

been conducted for this configuration for the valida-

tion of these computer codes.

Incipient Leading-Edge Separation

In supersonic wing design, the aerodynamicist
would like to have control over the formation of

leading-edge separation in order to make optimum

use of both separated and attached-flow conditions

at the leading edge. Thus, it becomes important to

be able to predict and understand the effects of cer-

tain geometric parameters on the initial formation

of leading-edge separation. A computational study

was conducted to determine the effects of leading-
edge radius and camber on the initial formation of

leading-edge separation on the leeside of a 65 ° con-

ical delta wing at Mach 1.6. Conical Navier-Stokes

solutions were obtained on geometries which varied

in leading-edge radius and/or spanwise camber.
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INCIPIENT SEPARATION COMPUTATIONAL STUDY

M = 1.6, A = 65 °, Re = 1 x 106

Turbulent boundary layer
color contour piots-crossflow Mach number

Sharp leading edge Rounded leading edge
no camber

10 ° camber

A summary of the results is shown in the

figure below. The test conditions were Mach 1.6,
a local Reynolds number of 1 × 106, and a tur-

bulent boundary-layer condition. The computa-
tional data are presented in the form of cross-flow

Mach number contours and surface-pressure distri-

butions. The data show that at an angle of attack

of 4° , the leading-edge separation observed on the

sharp leading-edge geometry is prevented through

the use of leading-edge radius. At the higher an-

gle of attack of 8°, the rounded leading-edge ge-

ometry has a leading-edge separated-flow pattern

which can be prevented through the use of span-

wise camber. Based on this study, three wind-tunnel

models are being designed to verify these results.

A Passive Venting Technique To Facilitate

Store Separation From Shallow Cavities

A study was recently completed in the LaRC
UPWT to evaluate the effectiveness of a passive
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venting technique for improving the aerodynamic

characteristics of stores separating from shallow cav-

ities. The large pressure gradients and flow-turning

angles that normally occur for shallow cavity flow

fields can create large pitching moments on a store

during separation and make it pitch up; and, in some

cases, fly back into the cavity. A characteristic pres-
sure distribution for shallow cavities consists of low

pressures occurring over the forward part due to the

flow expanding into the cavity and large pressures oc-

curring over the rear part due to the flow compressing
as it leaves the cavity. The existence of this pressure

difference led to the passive-venting concept investi-

gated in this study. This concept consists of small

pipes installed on the cavity floor which permit high

pressures at the rear to vent to the low-pressure re-

gion at the front of the cavity. The resulting increase
in pressure at the front will then reduce the extent of

flow expanding into the cavity and decrease the local

flow-turning angles, which should reduce the store

pitching moments.
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Typical data results from the present study for a
store separating from a shallow cavity are presented
in the figure and show that the store pitching mo-
ments at a free-stream Mach number (M) of 1.70
were significantly reduced with the vent pipes in-
stalled as indicated by the square symbols. These
results are for the case of the store separating from
a side carriage-position in the cavity. Similar results
were also obtained at this Mach number with the

store separating from the center carriage position.
Z/d
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PROPULSION AERODYNAMICS BRANCH

THE MISSION

The Propulsion Aerodynamics Branch (PAB)

conducts theoretical and experimental research on

aerodynamic phenomena at subsonic, transonic, and

supersonic speeds, with special emphasis directed to-

ward studies of engine-airframe integration problems.

Research is aimed at understanding and account-

ing for the mutual interference effects which exist

between components of the propulsion system and

the airframe and installation concepts which will re-

sult in a significant increase in aircraft cruise and

maneuvering performance.
Perform research directed toward the develop-

ment of analytical methods for predicting the

propulsion/airframe integration characteristics of ad-

vanced aircraft concepts. While the goal of this
research is to develop methods to address the com-

plete aircraft configuration with propulsion effects,
the current status is aimed at developing meth-

ods to predict the characteristics of the integrated

nozzle/afterbodies, inlet forebodies, and turboprop/

turbofan-wing integration. The approaches under
consideration include the utilization of both the

approximate patched methods and the more complex

Euler and Navier-Stokes equations. Where necessary,

the analytical work is supplemented by related ex-

perimental studies which will be used to verify and
determine the utility of test analytical methods.

Develop new and innovative propulsion integra-

tion schemes which will result in significant increases

in aircraft performance. Ill this research, the em-

phasis will be on integrating advanced axisymmet-

ric and nonaxisymmetric nozzles into fighter aircraft

configurations and turbofan and turboprop nacelles

into transport Mrcraft. Studies will be conducted at

subsonic, transonic, and supersonic speeds.

Responsible for the operation of the 16-Foot

Transonic Tunnel complex, which includes the

16-Foot Transonic Tunnel (16-Foot TT), the Static

Test Facility, and the 16- by 24-Inch Water Tunnel

(16- by 24-Inch WT). In this capacity, the program

objective is to coordinate the requirement for re-

search time to conduct in-house research programs,

cooperative studies, and support of industry and

other government agencies.
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THE FACILITIES

16-Foot Transonic Tunnel

The LaRC 16-Foot TT shown in the figure below,

which was originally placed into operation in 1941,
is a closed-circuit, single-return, continuous-flow

atmospheric tunnel. Speeds up to Mach 1.05 are

obtained with the tunnel main-drive fans, and speeds

from Mach 1.05 up to Mach 1.30 are obtained with

a combination of main-drive and test-section plenum

suction. The slotted octagonal test section shown

in the figures on the next page, measures 15.5 feet

across the fiats. The tunnel is equipped with an air

exchanger with adjustable intake and exit vanes to
provide some temperature control. This facility has a

main-drive power system consisting of two 30 000-hp

motors driving counter-rotating fans. A 36000-hp

compressor provides test-section plenum suction.
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The tunnel is used for force, moment, pressure,

flow-visualization, and propulsion-airframe integra-

tion studies. Model mounting consists of sting,

sting-strut, and semispan support arrangements;

propulsion simulation studies are made with dry,

cold, high-pressure air or with air-driven engine
simulators.

The 16-Foot Transonic Tunnel has recently
undergone several major modifications. These in-
clude a floor-mount system to facilitate semispan

model testing, a model-preparation area for model

build-up and calibration, and a new model support
strut with an angle-of-attack range from -10 ° to

25 ° , remote roll capability, and dual high-pressure air

systems.

Static Test Facility

The Static Test Facility (STF) of the Langley

16-Foot TT complex shown in the first figure on
the next page, has been used for nozzle internal-
performance testing since the middle 1950's. Early

testing was conducted using hydrogen peroxide to
simulate jet exhaust; however, since 1976, high-
pressure air has been used for exhaust simulation.
Subscale nozzle performance tests are conducted in a
high-ceiling room with the jet exhausting to the at-

mosphere. The control room shown in the second
figure on the next page, is remotely located from
the test area and a closed-circuit television camera

is used to observe the model. This facility uses a
high-pressure air system (similar to the one used in

the 16-Foot TT) to simulate jet exhaust.
The facility is typically used for force, moment,

pressure, and flow-visualization studies on multi-

function nozzles. The impact of pitch and yaw

thrust vectoring, thrust reversing, and novel exhaust
nozzle concepts on internal performance is gener-
ally the objective of research conducted in the STF.
Special features of this facility include an acoustically-

triggered schlieren flow-visualization system for ob-
taining flow details resulting from particular acoustic
structures.
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Reynolds numbers. The tunnel has a vertical test

section with an effective working length of approxi-

mately 4.5 feet. The test section is 16 inches high

by 24 inches wide. All four sidewalls are Plexiglas to

provide optical access. A pump transfers the water
from the test-section exit to the reservoir upstream

of the test section. The test section velocity can be

varied from 0 ft/s to 0.75 ft/s. The unit Reynolds-

number range for water at 78 ° F for this velocity

range is 0 to 7.7 × 104/ft. The normal test velocity

that produces smooth flow is 0.25 ft/s.

SKETCH OFTHE LANGLEY 16- BY 24-INCH WATER TUNNEL

__ :....

The facility has undergone recent upgrades,

including the addition of a stand-alone data acqui-

sition system to allow operation independent of the

16-Foot TT data-acquisition system. The test-bay-

area walls have been acoustically treated to re-

duce noise in the test bay and control room. A

dual-flow thrust stand is expected to be in use by

the end of FY 1991, allowing performance testing
of multistream-flow exhaust-nozzle concepts. An

upgrade planned for FY 1992 will increase the
mass-flow capability of the facility from 15 to 45 Ib/s.

16- by 24-Inch Water Tunnel

The Langley 16- by 24-Inch WT is used for (see

two figures below) flow-visualization studies at low

A sting-type model-support system positions the
model. The model attitude can be varied in two

planes over angle ranges of -_ 33 ° and _ 15 ° .

Operator-controlled electric motors are mounted out-
side of the test section to control the model position.

The model position is read by the operator on a pro-

tractor mounted to the model support. Semispan

models are mounted on a splitter plate supported by

a sting with a lateral offset.
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Ordinary food coloring is used as a dye to

visualize the flow. The dye is supplied by three reser-

voirs under pressure so that up to three dye colors

may be used. Dye may be ejected from small ori-
fices on the model surface or injected upstream of

the test section. The water tunnel was placed in

operation in 1987 and has primarily been used to

study vortical flows associated with forebodies, nose
strakes, wings and wing-leading-edge extensions, and

flaps. In some cases, these flows have been studied

in the presence of flowing nozzles and inlets. By the

end of FY 1990, a laser-light-sheet flow-visualization

technique using fluorescent dye and a laser fluores-
cence anemometer will be available to obtain more

quantitative flow information.

CURRENT PROGRAMS

The PAB maintains a balanced propulsion

airframe integration research program in both high-

performance aircraft and civil transports. The cur-

rent emphasis in the high-performance-aircraft arena

is centered around improving internal and installed

performance of multifunction nozzles (nozzles capa-
ble of simultaneous pitch and yaw vectoring and/or

thrust reversing), and the integration of these noz-

zles for propulsive control of highly-maneuverable
aircraft. This work involves both experimental and

computational efforts at subsonic, transonic, and

supersonic speeds.
The civil transport research conducted within

the PAB is also a multifaceted effort. Computa-

tional techniques are extensively used to address both

turboprop and turbofan propulsion system instal-

lation issues. Early program emphasis was placed

on the development of Euler analysis codes to allow

researchers to address turboprop integration prob-

lems. These codes are being used by PAB researchers

to verify the CFD methods and to assess performance

of designs capable of reducing and possibly eliminat-

ing unfavorable turboprop installation effects. More

recently, these same Euler codes are being used to
address the complex integration issues associated

with incorporating ultra-high-bypass ratio turbofans
and ducted propellers in future transonic transport

designs.
The PAB is also involved in experimental and

computational research in support of the National

Aerospace Plane (NASP). The current research ef-
fort addresses the off-design performance of the

nozzle/afterbody and forebody/inlet. In partic-

ular, transonic nozzle drag reduction and tran-

sonic/supersonic forebody flowflelds at the inlet

face are being worked to provide as efficient a

propulsion airframe integration as possible. Both

experimental research models and three-dimensional

Navier-Stokes computational techniques arc being
used.

T.
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HIGHLIGHTS OF RECENT

RESEARCH

Static Thrust Vector Envelope for F-18

HARV Multiaxis Thrust Vectoring System

An investigation has been conducted to
evaluate the effectiveness of the multiaxis thrust-

vectoring system for the F-18 HARV. This thrust vec-

toring system consists of three externally mounted
vanes on each exhaust nozzle of the F-18 aircraft.

The investigation was conducted in the STF of the
NASA LaRC 16-Foot TT. Four hundred configu-

rations consisting of various combinations of vane
deflection at two nozzle power settings were tested

at nozzle pressure ratios up to 6.0. The model

used for this investigation is shown in the first figure
above. The measured thrust-vector envelope from

this investigation is shown in the plot of pitch angle

OR[G LN._L P,_GE
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versus yaw angle (second figure above). These

results indicated that the thrust-vectoring system

will provide the required pitch-thrust-vectoring ca-

pability. However, only about 85 percent of the re-

quired yaw-thrust vectoring will be supplied by this

system. Of course, external flow effects on this type

of multiaxis control system could be substantial. A

future test utilizing an F-18 propulsion model will be

used to investigate these external flow effects on the

thrust-vectoring system.

Navier-Stokes Code (PAB3D) for Jet

Plume Aerodynamics

The Navier-Stokes code (PAB3D) for jet-plume
aerodynamics is based on the 3-D time-

dependent Reynolds-averaged Navier-Stokes equa-

tions written in strong conservation form. Finite-

volume, upwind-biased flux-splitting schemes are

used in the implementation. Solver options include

time-dependent, PNS, and space-marching modes.

The multiblock, multizone interface algorithm built

into this code allows general application to com-

plex configurations and propulsion integration. Op-

tions for several turbulence models (mixing length,

Baldwin and Lomax, Johnson and King, and

Goldberg) and an adaptive-grid option for jet-plume

calculations have recently been added to the code.

The figure below shows a successful application for

calculations of an elliptic supersonic jet. Unique

features such as the nonsymmetrical growth of the

shear layer leading to axis-switching and the reduced
shock-cell volume have been captured in this calcu-
lation. This code has been validated for circular-

jet aerodynamic analysis, and data comparisons for

square and elliptic jets are in progress. The PAB3D

code has been recently used for jet/afterbody flow
analysis to evaluate the accuracy of several turbu-

lence models: Baldwin and Lomax, Johnson and

King, and Goldberg. Surface-pressure distributions

obtained with the Johnson and King model compared

favorably with experimental data.
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Effects of Advanced Superfan Nacelles on

Low-Wing-Transport Model

An experimental study was conducted on a twin-

engine, low-wing-transport model (see figure below)

in the 16-Foot TT to determine wing/nacelle inter-
ference effects of two different designs of flow-through

nacelles simulating very high bypass ratio advanced

technology turbofans (BPR 18). For comparison,

current technology turbofan nacelles (BPR 6) were

also tested. Mach number (0.5 to 0.8) and angle

of attack (-4 ° to 6° ) were tested over ranges ap-
propriate for a subsonic transport designed to cruise
at M = 0.77 and CL = 0.55. Measurements in-

cluded 6-component forces and moments and ex-

tensive external-surface static-pressure data on the

wing, pylon, and nacelles. Minimum drag with each

set of nacelles installed was determined by varying

nacelle incidence angle from -3 ° (nose down) to 4°

and nacelle tow-in angle from 0 ° to 2°, in 1 ° in-

crements to get the optimum combination. Cur-

rent technology nacelles were tested at 0.34 and

0.40 of the 1/2 span, while the two superfan nacelle

configurations were only tested at the 0.40 position.

Results from this investigation indicate that

although the drag of the large superfan nacelles was

higher than drag for current technology nacelles, ad-

verse interference effects from the superfan nacelles

on the wing/body/pylon were negligible. Improved

SFC performance of the superfan engines is expected

to more than offset the increased absolute drag
values.

configurations. The propeller power effects are

simulated by an actuator disk, where either compo-

nents of force and work distributions or total pres-

sure, total temperature, and swirl distributions are

prescribed along the disk as boundary conditions for
the flow solver.

Computational grids are generated, either

algebraically or by solving elliptic partial-differential

equations, for a given surface-geometry specifica-

tion. The flow solver has multiblock capability and

employs a multigrid scheme with successive mesh

refinement to accelerate convergence. A separate

embedded flow solver provides detailed flow charac-

teristics in the vicinity of the propulsive unit. This

embedded solver inherits its starting values from the

global solution.

The code has been successfully applied to the

NASA aft-turboprop model shown in the figure on

the following page. Qualitative analysis of the CFD
solutions has aided in the selection and modification

of configurations for quantitative experimental anal-

ysis. For the example, shown in the figure, increas-

ing the sweep of the strut is found to significantly
reduce the adverse installation effects of propulsion

integration.

A typical analysis takes about 2 hours on a

CRAY-2, uses 295,000 grid points, and requires

12 megawords of memory in the single-block mode

or 3 megawords of memory in the multiblock mode.
Embedded mesh solutions consume less than 10 min-

utes of CPU on the CRAY-2. This code is currently

being applied to the development of a CFD code

for turbofan/superfan installations. Additionally, an
inverse (target-pressure distribution) design code is

being developed for transport applications.

Development of Euler Code for Turboprop

Integration of Full Airplane

Configurations

A transonic, three-dimensional, inviscid (Euler)

CFD code was developed for the study of turboprop

engine/airframe integration. This code may be used

for either aft-mounted or wing-mounted full-airplane

Concepts for Alleviation of Adverse Inlet

Spillage Interactions on External Stores

The spillage flow around inlets on fighter-type

aircraft at reduced engine throttle settings has po-

tential for adversely interacting with external stores.

The resultant effect on aerodynamic surfaces due to

the interaction with the vortical spillage flows can be

structural damage due to severe buffeting and release
of the stores into an unsteady flow environment. As

a first step in addressing this problem, the personnel

at the 16- by 24-Inch WT were asked to study the

flow using a 1/48-scale twin-engine fighter model.
A test was conducted in the 16- by 24-Inch WT

at a Reynolds number based on mean geometric
chord of 8400. The model had flowing inlets which
were connected to a series of valves and flowmeters

so that the inlet flow rates could be varied. Flow

visualization using colored dye indicated the path of

the vortical spillage flows.
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A series of flow-control devices was studied for

manipulating the spillage flows. Two approaches

were taken to a solution of the problem. First, de-

vices for deflecting the spillage flows were tested.
These devices were vertical fins attached to the bot-

tom of the fuselage and placed to deflect thc spillage

flow away from the external stores. The second ap-

proach was based on creation of auxiliary vortex flows

to interact with the vortical spillage flows and al-
leviate their adverse interaction with the external

stores. The devices which created these auxiliary vor-

tex flows were also fins placed at various locations on

the fuselage. The tip vortices from these devices were

used to neutralize ("unwind") the spillage vortices,

induce the spillage vortices away from the stores, or

deflect and deform the spillage vortices.

The results of the study showed that the devices

which created auxiliary vortices worked more effec-

tively than the flow-deflecting fins. In particular, the
fins that neutralized the spillage vortex and those

that deflected and deformed it appeared most suc-

cessful. The delta fins for neutralizing the spillage
flow are shown in the figure below. They are lo-

cated near the source of the vortical spillage flow and

immediately neutralize the flow and slightly over-

compensate it by reversing the direction of rotation.
This flow-rotation reversal is not observable in the

still photograph, but was verified during testing and

recorded on videotape.

The potential for effective utilization of devices

for alleviation of adverse interactions of inlet spillage

flows with external stores has been shown by the

results of this test. Further studies, including de-

tailed design, should be carried out in facilities where

higher Reynolds numbers can be simulated and

compressibility effects can be addressed.
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